← All Models
|
Other Chinese/Asian AI Labs:
Seed-OSS-36B-Base
Seed-OSS-36B-Base-woSyn
Kimi-K2-Thinking
LongCat-Flash-Chat
GLM-4.5
GLM-4.5-Air
GLM-4.6
GLM-4.6V
GLM-4.6V-Flash
dots.llm1.base
rednote-hilab/dots.llm1.base
📊 Model Parameters
Total Parameters
142,774,373,888
Context Length
32,768
Hidden Size
4096
Layers
62
Attention Heads
32
KV Heads
32
💾 Memory Requirements
FP32 (Full)
531.88 GB
FP16 (Half)
265.94 GB
INT8 (Quantized)
132.97 GB
INT4 (Quantized)
66.48 GB
🔑 KV Cache (Inference)
Per Token (FP16)
1.02 MB
Max Context FP32
62.00 GB
Max Context FP16
31.00 GB
Max Context INT8
15.50 GB
⚙️ Model Configuration
Core Architecture
Vocabulary Size
152,064
Hidden Size
4,096
FFN Intermediate Size
10,944
Number of Layers
62
Attention Heads
32
KV Heads
32
Context & Position
Max Context Length
32,768
RoPE Base Frequency
10,000,000
RoPE Scaling
Not set
Sliding Window Size
Not set
Window Attention Layers
62
Layer Attention Types
[62 items]
Uses Sliding Window
No
Attention Configuration
Attention Bias
No
Attention Dropout
0%
Tied Embeddings
No
Mixture of Experts
Expert FFN Size
1,408
Shared Experts
2
Number of Experts
128
Experts per Token
6
Dense Initial Layers
1
Normalize TopK Probabilities
Yes
Expert Groups
1
Groups per Token
1
Routing Scale Factor
2.5
MoE Layer Frequency
1
Router Scoring Function
sigmoid
TopK Method
noaux_tc
Activation & Normalization
Activation Function
silu
RMSNorm Epsilon
1e-05
Special Tokens
BOS Token ID
Not set
Pad Token ID
Not set
EOS Token ID
151643
Data Type
Model Dtype
bfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding
Attention
MLP
Norm
Embedding
Clear
Expand All
Collapse All