← All Models
|
Microsoft Phi - Small language models with strong reasoning:
phi-1
phi-1_5
phi-2
Phi-3-mini-4k-instruct
Phi-4
microsoft/Phi-4
📊 Model Parameters
Total Parameters
14,659,507,200
Context Length
16,384
Hidden Size
5120
Layers
40
Attention Heads
40
KV Heads
10
💾 Memory Requirements
FP32 (Full)
54.61 GB
FP16 (Half)
27.31 GB
INT8 (Quantized)
13.65 GB
INT4 (Quantized)
6.83 GB
🔑 KV Cache (Inference)
Per Token (FP16)
204.80 KB
Max Context FP32
6.25 GB
Max Context FP16
3.12 GB
Max Context INT8
1.56 GB
⚙️ Model Configuration
Core Architecture
Vocabulary Size
100,352
Hidden Size
5,120
FFN Intermediate Size
17,920
Number of Layers
40
Attention Heads
40
KV Heads
10
Context & Position
Max Context Length
16,384
RoPE Base Frequency
250,000
RoPE Scaling
Not set
Sliding Window Size
Not set
Attention Configuration
Attention Dropout
0%
Tied Embeddings
No
Attention Bias
No
Activation & Normalization
Activation Function
silu
RMSNorm Epsilon
1e-05
Dropout (Training)
Residual Dropout
0%
Embedding Dropout
0%
Special Tokens
BOS Token ID
100,257
Pad Token ID
100,349
EOS Token ID
100265
Data Type
Model Dtype
bfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding
Attention
MLP
Norm
Embedding
Clear
Expand All
Collapse All