← All Models
|
Gemma - Google's lightweight open models built from Gemini research:
gemma-2b
gemma-7b
gemma-2-2b
gemma-2-9b
gemma-2-27b
gemma-3-270m
gemma-3-1b-pt
gemma-3-4b-pt
gemma-3-12b-pt
gemma-3-27b-pt
google/gemma-3-270m
📊 Model Parameters
Total Parameters
435,870,336
Context Length
32,768
Hidden Size
640
Layers
18
Attention Heads
4
KV Heads
1
💾 Memory Requirements
FP32 (Full)
1.62 GB
FP16 (Half)
831.4 MB
INT8 (Quantized)
415.7 MB
INT4 (Quantized)
207.8 MB
🔑 KV Cache (Inference)
Per Token (FP16)
18.43 KB
Max Context FP32
1.12 GB
Max Context FP16
576.0 MB
Max Context INT8
288.0 MB
⚙️ Model Configuration
Core Architecture
Vocabulary Size
262,144
Hidden Size
640
FFN Intermediate Size
2,048
Number of Layers
18
Attention Heads
4
Head Dimension
256
KV Heads
1
Context & Position
Max Context Length
32,768
RoPE Base Frequency
1000000.0
Sliding Window Size
512
Layer Attention Types
[18 items]
RoPE Scaling
Not set
Attention Configuration
Tied Embeddings
Yes
Attention Bias
No
Attention Dropout
0%
Query Pre-Attention Scalar
256
Output Softcapping
Not set
Attention Softcapping
Not set
Activation & Normalization
RMSNorm Epsilon
1e-06
Activation Function
gelu_pytorch_tanh
Special Tokens
BOS Token ID
2
Pad Token ID
0
EOS Token ID
1
Data Type
Model Dtype
bfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding
Attention
MLP
Norm
Embedding
Clear
Expand All
Collapse All