← All Models
|
Gemma - Google's lightweight open models built from Gemini research:
gemma-2b
gemma-7b
gemma-2-2b
gemma-2-9b
gemma-2-27b
gemma-3-270m
gemma-3-1b-pt
gemma-3-4b-pt
gemma-3-12b-pt
gemma-3-27b-pt
google/gemma-2-2b
📊 Model Parameters
Total Parameters
3,204,165,888
Context Length
8,192
Hidden Size
2304
Layers
26
Attention Heads
8
KV Heads
4
💾 Memory Requirements
FP32 (Full)
11.94 GB
FP16 (Half)
5.97 GB
INT8 (Quantized)
2.98 GB
INT4 (Quantized)
1.49 GB
🔑 KV Cache (Inference)
Per Token (FP16)
106.50 KB
Max Context FP32
1.62 GB
Max Context FP16
832.0 MB
Max Context INT8
416.0 MB
⚙️ Model Configuration
Core Architecture
Vocabulary Size
256,000
Hidden Size
2,304
FFN Intermediate Size
9,216
Number of Layers
26
Attention Heads
8
Head Dimension
256
KV Heads
4
Context & Position
Max Context Length
8,192
RoPE Base Frequency
10000.0
Sliding Window Size
4,096
Layer Attention Types
[26 items]
Attention Configuration
Tied Embeddings
Yes
Attention Bias
No
Attention Dropout
0%
Query Pre-Attention Scalar
256
Output Softcapping
30.0
Attention Softcapping
50.0
Activation & Normalization
Activation Function
gelu_pytorch_tanh
RMSNorm Epsilon
1e-06
Special Tokens
BOS Token ID
2
Pad Token ID
0
EOS Token ID
1
Data Type
Model Dtype
float32
Layer Types:
Attention
MLP/FFN
Normalization
Embedding
Attention
MLP
Norm
Embedding
Clear
Expand All
Collapse All