deepseek-ai/DeepSeek-R1

📊 Model Parameters

Total Parameters 671,026,419,200
Context Length 163,840
Hidden Size 7168
Layers 61
Attention Heads 128
KV Heads 128

💾 Memory Requirements

FP32 (Full) 2499.77 GB
FP16 (Half) 1249.88 GB
INT8 (Quantized) 624.94 GB
INT4 (Quantized) 312.47 GB

🔑 KV Cache (Inference)

Per Token (FP16) 1.75 MB
Max Context FP32 533.75 GB
Max Context FP16 266.88 GB
Max Context INT8 133.44 GB

⚙️ Model Configuration

Core Architecture

Vocabulary Size129,280
Hidden Size7,168
FFN Intermediate Size18,432
Number of Layers61
Attention Heads128
KV Heads128

Context & Position

Max Context Length163,840
RoPE Base Frequency10,000
RoPE Scaling{...} (7 fields)

Attention Configuration

Attention BiasNo
Attention Dropout0%
Tied EmbeddingsNo

Multi-Head Latent Attention

KV LoRA Rank512
Query LoRA Rank1,536
QK RoPE Head Dimension64
Value Head Dimension128
QK Non-RoPE Head Dimension128

Mixture of Experts

Expert FFN Size2,048
Shared Experts1
Number of Experts256
Routing Scale Factor2.5
TopK Methodnoaux_tc
Expert Groups8
Groups per Token4
Experts per Token8
MoE Layer Frequency1
Dense Initial Layers3
Normalize TopK ProbabilitiesYes
Router Scoring Functionsigmoid

Speculative Decoding

Next-N Prediction Layers1

Activation & Normalization

Activation Functionsilu
RMSNorm Epsilon1e-06

Special Tokens

BOS Token ID0
Pad Token IDNot set
EOS Token ID1

Data Type

Model Dtypebfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding