← All Models
|
architecture:
Trinity-Nano-Base
Trinity-Mini
Trinity-Large-TrueBase
arcee-ai/Trinity-Large-TrueBase
📊 Model Parameters
Total Parameters
398,635,286,016
Context Length
8,192
Hidden Size
3072
Layers
60
Attention Heads
48
KV Heads
8
💾 Memory Requirements
FP32 (Full)
1485.03 GB
FP16 (Half)
742.52 GB
INT8 (Quantized)
371.26 GB
INT4 (Quantized)
185.63 GB
🔑 KV Cache (Inference)
Per Token (FP16)
245.76 KB
Max Context FP32
3.75 GB
Max Context FP16
1.88 GB
Max Context INT8
960.0 MB
⚙️ Model Configuration
Core Architecture
Vocabulary Size
200,192
Hidden Size
3,072
FFN Intermediate Size
12,288
Number of Layers
60
Attention Heads
48
Head Dimension
128
KV Heads
8
Context & Position
Max Context Length
8,192
RoPE Base Frequency
10,000
Sliding Window Size
4,096
Layer Attention Types
[60 items]
Attention Configuration
Attention Bias
No
Attention Dropout
0%
Tied Embeddings
No
Mixture of Experts
Expert FFN Size
3,072
Experts per Token
4
Number of Experts
256
Expert Groups
1
Groups per Token
1
Activation & Normalization
Activation Function
silu
RMSNorm Epsilon
1e-05
Special Tokens
EOS Token ID
Not set
Pad Token ID
Not set
BOS Token ID
Not set
Data Type
Model Dtype
bfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding
Attention
MLP
Norm
Embedding
Clear
Expand All
Collapse All