Qwen/Qwen3-4B

📊 Model Parameters

Total Parameters 4,411,424,256
Context Length 40,960
Hidden Size 2560
Layers 36
Attention Heads 32
KV Heads 8

💾 Memory Requirements

FP32 (Full) 16.43 GB
FP16 (Half) 8.22 GB
INT8 (Quantized) 4.11 GB
INT4 (Quantized) 2.05 GB

🔑 KV Cache (Inference)

Per Token (FP16) 147.46 KB
Max Context FP32 11.25 GB
Max Context FP16 5.62 GB
Max Context INT8 2.81 GB

⚙️ Model Configuration

Core Architecture

Vocabulary Size151,936
Hidden Size2,560
FFN Intermediate Size9,728
Number of Layers36
Attention Heads32
KV Heads8
Head Dimension128

Context & Position

Max Context Length40,960
Uses Sliding WindowNo
Sliding Window SizeNot set
Window Attention Layers36
RoPE Base Frequency1,000,000
RoPE ScalingNot set
Layer Attention Types[36 items]

Attention Configuration

Attention BiasNo
Attention Dropout0%
Tied EmbeddingsYes

Activation & Normalization

Activation Functionsilu
RMSNorm Epsilon1e-06

Special Tokens

BOS Token ID151,643
Pad Token IDNot set
EOS Token ID151645

Data Type

Model Dtypebfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding