Qwen/Qwen3-0.6B

📊 Model Parameters

Total Parameters 751,632,384
Context Length 40,960
Hidden Size 1024
Layers 28
Attention Heads 16
KV Heads 8

💾 Memory Requirements

FP32 (Full) 2.80 GB
FP16 (Half) 1.40 GB
INT8 (Quantized) 716.8 MB
INT4 (Quantized) 358.4 MB

🔑 KV Cache (Inference)

Per Token (FP16) 114.69 KB
Max Context FP32 8.75 GB
Max Context FP16 4.38 GB
Max Context INT8 2.19 GB

⚙️ Model Configuration

Core Architecture

Vocabulary Size151,936
Hidden Size1,024
FFN Intermediate Size3,072
Number of Layers28
Attention Heads16
KV Heads8
Head Dimension128

Context & Position

Max Context Length40,960
Uses Sliding WindowNo
Sliding Window SizeNot set
Window Attention Layers28
RoPE Base Frequency1,000,000
RoPE ScalingNot set
Layer Attention Types[28 items]

Attention Configuration

Attention BiasNo
Attention Dropout0%
Tied EmbeddingsYes

Activation & Normalization

Activation Functionsilu
RMSNorm Epsilon1e-06

Special Tokens

BOS Token ID151,643
Pad Token IDNot set
EOS Token ID151645

Data Type

Model Dtypebfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding