Qwen/Qwen2.5-3B

📊 Model Parameters

Total Parameters 3,397,103,616
Context Length 32,768
Hidden Size 2048
Layers 36
Attention Heads 16
KV Heads 2

💾 Memory Requirements

FP32 (Full) 12.66 GB
FP16 (Half) 6.33 GB
INT8 (Quantized) 3.16 GB
INT4 (Quantized) 1.58 GB

🔑 KV Cache (Inference)

Per Token (FP16) 36.86 KB
Max Context FP32 2.25 GB
Max Context FP16 1.12 GB
Max Context INT8 576.0 MB

⚙️ Model Configuration

Core Architecture

Vocabulary Size151,936
Hidden Size2,048
FFN Intermediate Size11,008
Number of Layers36
Attention Heads16
KV Heads2

Context & Position

Max Context Length32,768
Uses Sliding WindowNo
Sliding Window SizeNot set
Window Attention Layers36
RoPE Base Frequency1000000.0
RoPE ScalingNot set
Layer Attention Types[36 items]

Attention Configuration

Attention Dropout0%
Tied EmbeddingsYes

Activation & Normalization

Activation Functionsilu
RMSNorm Epsilon1e-06

Special Tokens

BOS Token ID151,643
Pad Token IDNot set
EOS Token ID151643

Data Type

Model Dtypebfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding