Qwen/Qwen2.5-1.5B

📊 Model Parameters

Total Parameters 1,777,088,000
Context Length 131,072
Hidden Size 1536
Layers 28
Attention Heads 12
KV Heads 2

💾 Memory Requirements

FP32 (Full) 6.62 GB
FP16 (Half) 3.31 GB
INT8 (Quantized) 1.66 GB
INT4 (Quantized) 847.4 MB

🔑 KV Cache (Inference)

Per Token (FP16) 28.67 KB
Max Context FP32 7.00 GB
Max Context FP16 3.50 GB
Max Context INT8 1.75 GB

⚙️ Model Configuration

Core Architecture

Vocabulary Size151,936
Hidden Size1,536
FFN Intermediate Size8,960
Number of Layers28
Attention Heads12
KV Heads2

Context & Position

Max Context Length131,072
Uses Sliding WindowNo
Sliding Window SizeNot set
Window Attention Layers28
RoPE Base Frequency1000000.0
RoPE ScalingNot set
Layer Attention Types[28 items]

Attention Configuration

Attention Dropout0%
Tied EmbeddingsYes

Activation & Normalization

Activation Functionsilu
RMSNorm Epsilon1e-06

Special Tokens

BOS Token ID151,643
Pad Token IDNot set
EOS Token ID151643

Data Type

Model Dtypebfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding