Qwen/Qwen1.5-4B

📊 Model Parameters

Total Parameters 3,950,369,280
Context Length 32,768
Hidden Size 2560
Layers 40
Attention Heads 20
KV Heads 20

💾 Memory Requirements

FP32 (Full) 14.72 GB
FP16 (Half) 7.36 GB
INT8 (Quantized) 3.68 GB
INT4 (Quantized) 1.84 GB

🔑 KV Cache (Inference)

Per Token (FP16) 409.60 KB
Max Context FP32 25.00 GB
Max Context FP16 12.50 GB
Max Context INT8 6.25 GB

⚙️ Model Configuration

Core Architecture

Vocabulary Size151,936
Hidden Size2,560
FFN Intermediate Size6,912
Number of Layers40
Attention Heads20
KV Heads20

Context & Position

Max Context Length32,768
Uses Sliding WindowNo
Sliding Window SizeNot set
Window Attention Layers21
RoPE Base Frequency5000000.0
RoPE ScalingNot set
Layer Attention Types[40 items]

Attention Configuration

Attention Dropout0%
Tied EmbeddingsNo

Activation & Normalization

Activation Functionsilu
RMSNorm Epsilon1e-06

Special Tokens

BOS Token ID151,643
Pad Token IDNot set
EOS Token ID151643

Data Type

Model Dtypebfloat16
Layer Types:
Attention
MLP/FFN
Normalization
Embedding